Numerical Simulation of a Flow Field in a Turbo Air Classifier and Optimization of the Process Parameters

Due to the rapid development of powder technology around the world, powder materials are being widely used in various fields, including metallurgy, the chemical industry, and petroleum. The turbo air classifier, as a powder production equipment, is one of the most important mechanical facilities in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2020-02, Vol.8 (2), p.237
Hauptverfasser: Zeng, Yun, Zhang, Si, Zhou, Yang, Li, Meiqiu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the rapid development of powder technology around the world, powder materials are being widely used in various fields, including metallurgy, the chemical industry, and petroleum. The turbo air classifier, as a powder production equipment, is one of the most important mechanical facilities in the industry today. In order to investigate the production efficiency of ultrafine powder and improve the classification performance in a turbo air classifier, two process parameters were optimized by analyzing the influence of the rotor cage speed and air velocity on the flow field. Numerical simulations using the ANSYS-Fluent Software, as well as material classification experiments, were implemented to verify the optimal process parameters. The simulation results provide many optimal process parameters. Several sets of the optimal process parameters were selected, and the product particle size distribution was used as the inspection index to conduct a material grading experiment. The experimental results demonstrate that the process parameters of the turbo air classifier with better classification efficiency for the products of barite and iron-ore powder were an 1800 rpm rotor cage speed and 8 m/s air inlet velocity. This research study provides theoretical guidance and engineering application value for air classifiers.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr8020237