Numerical Investigation of Influence of Reservoir Heterogeneity on Electricity Generation Performance of Enhanced Geothermal System
The enhanced geothermal system (EGS) reservoir consists of a heterogeneous fracture network and rock matrix, and the heterogeneity of the reservoir has a significant influence on the system’s electricity generation performance. In this study, we numerically investigated the influence of reservoir he...
Gespeichert in:
Veröffentlicht in: | Processes 2019-04, Vol.7 (4), p.202 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The enhanced geothermal system (EGS) reservoir consists of a heterogeneous fracture network and rock matrix, and the heterogeneity of the reservoir has a significant influence on the system’s electricity generation performance. In this study, we numerically investigated the influence of reservoir heterogeneity on system production performance based on geological data from the Gonghe Basin geothermal field, and analyzed the main factors affecting production performance. The results show that with the increase of reservoir heterogeneity, the water conduction ability of the reservoir gradually reduces, the water production rate slowly decreases, and this causes the electric power to gradually reduce, the reservoir impedance to gradually increase, the pump power to gradually decrease and the energy efficiency to gradually increase. The fracture spacing, well spacing and injection temperature all have a significant influence on electricity generation performance. Increasing the fracture spacing will significantly reduce electric power, while having only a very slight effect on reservoir impedance and pump power, thus significantly decreasing energy efficiency. Increasing the well spacing will significantly increase the electric power, while having only a very slight effect on the reservoir impedance and pump power, thus significantly increasing energy efficiency. Increasing the injection temperature will obviously reduce the electric power, decrease the reservoir impedance and pump power, and thus reduce energy efficiency. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr7040202 |