Disassembly and Its Obstacles: Challenges Facing Remanufacturers of Lithium-Ion Traction Batteries

Lithium-ion batteries are major drivers to decarbonize road traffic and electric power systems. With the rising number of electric vehicles comes an increasing number of lithium-ion batteries reaching their end of use. After their usage, several strategies, e.g., reuse, repurposing, remanufacturing,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2025-01, Vol.13 (1), p.123
Hauptverfasser: Ohnemüller, Gregor, Beller, Marie, Rosemann, Bernd, Döpper, Frank
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lithium-ion batteries are major drivers to decarbonize road traffic and electric power systems. With the rising number of electric vehicles comes an increasing number of lithium-ion batteries reaching their end of use. After their usage, several strategies, e.g., reuse, repurposing, remanufacturing, or material recycling can be applied. In this context, remanufacturing is the favored end-of-use strategy to enable a new use cycle of lithium-ion batteries and their components. The process of remanufacturing itself is the restoration of a used product to at least its original performance by disassembling, cleaning, sorting, reconditioning, and reassembling. Thereby, disassembly as the first step is a decisive process step, as it creates the foundation for all further steps in the process chain and significantly determines the economic feasibility of the remanufacturing process. The aim of the disassembly depth is the replacement of individual cells to replace the smallest possible deficient unit and not, as is currently the case, the entire battery module or even the entire battery system. Consequently, disassembly sequences are derived from a priority matrix, a disassembly graph is generated, and the obstacles to non-destructive cell replacement are analyzed for two lithium-ion traction battery systems, to analyze the distinctions between battery electric vehicle (BEV) and plug-in hybrid electric vehicle (PHEV) battery systems and identify the necessary tools and fundamental procedures required for the effective management of battery systems within the circular economy.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr13010123