Mechanical Characterization of Cardanol Bio-Based Epoxy Resin Blends: Effect of Different Bio-Contents

This study investigates the impact of an increased bio-content on the mechanical properties of bio-based epoxy resins. Cardanol-based epoxy and novolac resins (65% and 84% bio-content, respectively) were combined with two commercial cardanol-based epoxy systems to achieve higher total bio-contents....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2025-01, Vol.17 (3), p.296
Hauptverfasser: Iadarola, Andrea, Di Matteo, Pietro, Ciardiello, Raffaele, Gazza, Francesco, Lambertini, Vito Guido, Brunella, Valentina, Paolino, Davide Salvatore
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigates the impact of an increased bio-content on the mechanical properties of bio-based epoxy resins. Cardanol-based epoxy and novolac resins (65% and 84% bio-content, respectively) were combined with two commercial cardanol-based epoxy systems to achieve higher total bio-contents. Quasi-static tensile tests showed that resin blends with up to 40% bio-content maintain tensile properties comparable to traditional formulations, with a glass transition temperature (Tg) suitable for automotive requirements. The results highlight that an increased bio-content enhances flexibility and viscoelastic behavior. Additionally, the tests showed that epoxy resins with a high bio-content represent a sustainable alternative with reduced environmental impact. This work benchmarks novel cardanol-based epoxy formulations with existing bio-based systems, supporting their industrial application.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym17030296