Data-Driven Fault Diagnosis in Water Pipelines Based on Neuro-Fuzzy Zonotopic Kalman Filters

This work presents a data-driven approach for diagnosing sensor faults and leaks in hydraulic pipelines using neuro-fuzzy Zonotopic Kalman Filters (ZKF). The approach involves two key steps: first, identifying the nonlinear pipeline system using an adaptive neuro-fuzzy inference system (ANFIS), resu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical and computational applications 2024-12, Vol.30 (1), p.2
Hauptverfasser: Pérez-Pérez, Esvan-Jesús, González-Baldizón, Yair, Fragoso-Mandujano, José-Armando, Guzmán-Rabasa, Julio-Alberto, Santos-Ruiz, Ildeberto
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work presents a data-driven approach for diagnosing sensor faults and leaks in hydraulic pipelines using neuro-fuzzy Zonotopic Kalman Filters (ZKF). The approach involves two key steps: first, identifying the nonlinear pipeline system using an adaptive neuro-fuzzy inference system (ANFIS), resulting in a set of Takagi–Sugeno fuzzy models derived from pressure and flow data, and second, implementing a neuro-fuzzy ZKF bench to detect pipeline leaks and sensor faults with adaptive thresholds. The learning phase of the neuro-fuzzy systems considers only fault-free data. Fault isolation is achieved by comparing zonotopic sets and evaluating a fault signature matrix. The method accounts for parametric uncertainty and measurement noise, ensuring robustness. Experimental validation on a hydraulic pipeline demonstrated high precision (up to 99.24%), recall (up to 99.20%), and low false positive rates (as low as 0.76%) across various fault scenarios and operational points.
ISSN:2297-8747
2297-8747
DOI:10.3390/mca30010002