A New Perturbation Algorithm With Better Convergence Properties: Multiple Scales Lindstedt Poincare Method

A new perturbation algorithm combining the Method of Multiple Scales and Lindstedt-Poincare techniques is proposed for the first time. The algorithm combines the advantages of both methods. Convergence to real solutions with large perturbation parameters can be achieved for both constant amplitude a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical and computational applications 2009-04, Vol.14 (1), p.31-44
Hauptverfasser: Pakdemirli, M., Karahan, M. M. F., Boyacı, H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new perturbation algorithm combining the Method of Multiple Scales and Lindstedt-Poincare techniques is proposed for the first time. The algorithm combines the advantages of both methods. Convergence to real solutions with large perturbation parameters can be achieved for both constant amplitude and variable amplitude cases. Three problems are solved: Linear damped vibration equation, classical duffing equation and damped cubic nonlinear equation. Results of Multiple Scales, new method and numerical solutions are contrasted. The proposed new method produces better results for strong nonlinearities.
ISSN:2297-8747
2297-8747
DOI:10.3390/mca14010031