Multichannel Blind Deconvolution Using a Generalized Gaussian Source Model

In this paper, we present an algorithm for the problem of multi-channel blind deconvolution which can adapt to un-known sources with both sub-Gaussian and super-Gaussian probability density distributions using a generalized gaussian source model. We use a state space representation to model the mixe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical and computational applications 2007-04, Vol.12 (1), p.1-9
Hauptverfasser: Abu-Taleb, A. S., Zayed, E. M. E., El-Sayed, W. M., Badawy, A. M., Mohammed, O. A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present an algorithm for the problem of multi-channel blind deconvolution which can adapt to un-known sources with both sub-Gaussian and super-Gaussian probability density distributions using a generalized gaussian source model. We use a state space representation to model the mixer and demixer respectively, and show how the parameters of the demixer can be adapted using a gradient descent algorithm incorporating the natural gradient extension. We also present a learning method for the unknown parameters of the generalized Gaussian source model. The performance of the proposed generalized Gaussian source model on a typical example is compared with those of other algorithm, viz the switching nonlinearity algorithmproposed by Lee et al. [8].
ISSN:2297-8747
2297-8747
DOI:10.3390/mca12010001