An Optimized Weighted-Voting-Based Ensemble Learning Approach for Fake News Classification
The emergence of diverse content-sharing platforms and social media has rendered the dissemination of fake news and misinformation increasingly widespread. This misinformation can cause extensive confusion and fear throughout the populace. Confronting this dilemma necessitates an effective and accur...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2025-01, Vol.13 (3), p.449 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The emergence of diverse content-sharing platforms and social media has rendered the dissemination of fake news and misinformation increasingly widespread. This misinformation can cause extensive confusion and fear throughout the populace. Confronting this dilemma necessitates an effective and accurate approach to identifying misinformation, an intrinsically intricate process. This research introduces an automated and efficient method for detecting false information. We evaluated the efficacy of various machine learning and deep learning models on two separate fake news datasets of differing sizes via holdout cross-validation. Furthermore, we evaluated the efficacy of three distinct word vectorization methods. Additionally, we employed an enhanced weighted voting ensemble model that enhances fake news detection by integrating logistic regression (LR), support vector machine (SVM), gated recurrent unit (GRU), and long short-term memory (LSTM) networks. This method exhibits enhanced performance relative to previous techniques: 98.76% for the PolitiFact dataset and 97.67% for the BuzzFeed dataset. Furthermore, the model outperforms individual components, resulting in superior accuracy, precision, recall, and F1 scores. The enhancements in performance result from the ensemble method’s capacity to use the advantages of each base model, hence providing robust generalization across datasets. Cross-validation was employed to enhance the model’s trustworthiness, validating its capacity to generalize effectively to novel data. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math13030449 |