The Evolution and Outcomes of a Collaborative Testbed for Predicting Coastal Threats
Beginning in 2003, the Southeastern Universities Research Association (SURA) enabled an open-access network of distributed sensors and linked computer models through the SURA Coastal Ocean Observing and Predicting (SCOOP) program. The goal was to support collaborations among universities, government...
Gespeichert in:
Veröffentlicht in: | Journal of marine science and engineering 2020-08, Vol.8 (8), p.612, Article 612 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Beginning in 2003, the Southeastern Universities Research Association (SURA) enabled an open-access network of distributed sensors and linked computer models through the SURA Coastal Ocean Observing and Predicting (SCOOP) program. The goal was to support collaborations among universities, government, and industry to advance integrated observation and modeling systems. SCOOP improved the path to operational real-time data-guided predictions and forecasts of coastal ocean processes. This was critical to the maritime infrastructure of the U.S. and to the well-being of coastal communities. SCOOP integrated and expanded observations from the Gulf of Mexico, the South Atlantic Bight, the Middle Atlantic Bight, and the Chesapeake Bay. From these successes, a Coastal and Ocean Modeling Testbed (COMT) evolved with National Oceanic and Atmospheric Administration (NOAA) funding via the Integrated Ocean Observing System (IOOS) to facilitate the transition of key models from research to operations. Since 2010, COMT has been a conduit between the research community and the federal government for sharing and improving models and software tools. SCOOP and COMT have been based on strong partnerships among universities and U.S. agencies that have missions in ocean and coastal environmental prediction. During SURA's COMT project, which ended September 2018, significant progress was made in evaluating the performance of models that are progressively becoming operational. COMT successes are ongoing. |
---|---|
ISSN: | 2077-1312 2077-1312 |
DOI: | 10.3390/jmse8080612 |