Correlative Light and Electron Microscopy (CLEM): A Multifaceted Tool for the Study of Geological Specimens
Correlative light and electron microscopy (CLEM) is an advanced imaging approach that faces critical challenges in the analysis of both materials and biological specimens. CLEM integrates the strengths of both light and electron microscopy, in a hardware and software correlative environment, to prod...
Gespeichert in:
Veröffentlicht in: | Journal of Experimental and Theoretical Analyses 2023-11, Vol.1 (2), p.74-85 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Correlative light and electron microscopy (CLEM) is an advanced imaging approach that faces critical challenges in the analysis of both materials and biological specimens. CLEM integrates the strengths of both light and electron microscopy, in a hardware and software correlative environment, to produce a composite image that combines the high resolution of the electron microscope with the large field of view of the light microscope. It enables a more comprehensive understanding of a sample’s microstructure, texture, morphology, and elemental distribution, thereby facilitating the interpretation of its properties and characteristics. CLEM has diverse applications in the geoscience field, including mineralogy, petrography, and geochemistry. Despite its many advantages, CLEM has some limitations that need to be considered. One of its major limitations is the complexity of the imaging process. CLEM requires specialized equipment and expertise, and it can be challenging to obtain high-quality images that are suitable for analysis. In this study, we present a CLEM workflow based on an innovative sample holder design specially dedicated to the examination of thin sections and three-dimensional samples, with a particular emphasis on geosciences. |
---|---|
ISSN: | 2813-4648 2813-4648 |
DOI: | 10.3390/jeta1020006 |