Studies on Mechanical, Thermal and Morphological Properties of Betel Nut Husk Nano Cellulose Reinforced Biodegradable Polymer Composites

Nanocellulose has recently gained a significant level of attention from academic and industrial researchers due to its non-toxic, biocompatible, bio-degradable, low-cost, and easy availability that connects many applications. In this research, cellulose extracted from betel nut husk fiber (BNHF) was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of composites science 2020-09, Vol.4 (3), p.83
Hauptverfasser: Sultana, Tanvir, Sultana, Shahin, Nur, Husna Parvin, Khan, Md Wahab
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanocellulose has recently gained a significant level of attention from academic and industrial researchers due to its non-toxic, biocompatible, bio-degradable, low-cost, and easy availability that connects many applications. In this research, cellulose extracted from betel nut husk fiber (BNHF) was converted to nanocellulose by chemical technique to examine their potential for use as reinforcement in bio-composite applications. The cellulose isolated from BNHF was subjected to acid hydrolysis using 62% sulfuric acid under ultrasonic treatment to convert cellulose into nanocellulose. The particle size of nanocellulose was determined by particle size analyzer. The morphology, structure and thermal properties of nanocellulose were also determined by scanning electron microscope (SEM) and Fourier-transform infrared (FTIR), thermogravimetric analysis (TGA), and differential scanning calorimetric (DSC) analysis. The bio-composites of nanocellulose–polyvinyl alcohol (PVA) and cellulose–PVA were prepared with different weight percentages (1–5%) of nanocellulose and cellulose via casting methods. The tensile, thermal and morphological properties were characterized for all composites. Enhancement in the tensile, thermal, and morphological properties was found in the nanocellulose–PVA biocomposites.
ISSN:2504-477X
2504-477X
DOI:10.3390/jcs4030083