Mapping the Transglycosylation Relevant Sites of Cold-Adapted beta-D-Galactosidase from Arthrobacter sp. 32cB

beta-Galactosidase fromArthrobactersp. 32cB (Arth beta DG) is a cold-adapted enzyme able to catalyze hydrolysis of beta-d-galactosides and transglycosylation reaction, where galactosyl moiety is being transferred onto an acceptor larger than a water molecule. Mutants ofArth beta DG: D207A and E517Q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2020-07, Vol.21 (15), p.5354, Article 5354
Hauptverfasser: Rutkiewicz, Maria, Wanarska, Marta, Bujacz, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:beta-Galactosidase fromArthrobactersp. 32cB (Arth beta DG) is a cold-adapted enzyme able to catalyze hydrolysis of beta-d-galactosides and transglycosylation reaction, where galactosyl moiety is being transferred onto an acceptor larger than a water molecule. Mutants ofArth beta DG: D207A and E517Q were designed to determine the significance of specific residues and to enable formation of complexes with lactulose and sucrose and to shed light onto the structural basis of the transglycosylation reaction. The catalytic assays proved loss of function mutation E517 into glutamine and a significant drop of activity for mutation of D207 into alanine. Solving crystal structures of two new mutants, and new complex structures of previously presented mutant E441Q enables description of introduced changes within active site of enzyme and determining the importance of mutated residues for active site size and character. Furthermore, usage of mutants with diminished and abolished enzymatic activity enabled solving six complex structures with galactose, lactulose or sucrose bounds. As a result, not only the galactose binding sites were mapped on the enzyme's surface but also the mode of lactulose, product of transglycosylation reaction, and binding within the enzyme's active site were determined and the glucopyranose binding site in the distal of active site was discovered. The latter two especially show structural details of transglycosylation, providing valuable information that may be used for engineering ofArth beta DG or other analogous galactosidases belonging to GH2 family.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms21155354