Exploration and Empirical Study on Spatial Distribution of SOC at the Core Area in Coastal Tamarix Forests’ Inland Side of Changyi National Marine Ecological Area
The forest soil carbon pool plays a vital role in terrestrial ecosystems, being of great significance for maintaining global balance, regulating the global carbon cycle, and facilitating ecological restoration. Shandong Changyi Marine Ecological Special Protection Area is the only state-level marine...
Gespeichert in:
Veröffentlicht in: | Forests 2025-01, Vol.16 (1), p.169 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The forest soil carbon pool plays a vital role in terrestrial ecosystems, being of great significance for maintaining global balance, regulating the global carbon cycle, and facilitating ecological restoration. Shandong Changyi Marine Ecological Special Protection Area is the only state-level marine special protection area in China with tamarisk as the main object of protection, and it is the largest continuous and the best preserved natural tamarisk forest distribution area on the mainland coast of China. Compared to other forested areas, research on the spatial distribution of SOC at the core area in coastal Tamarix forests’ inland side appears to be relatively scarce. Based on this, this paper takes the core area of the Changyi National Marine Ecological Special Protection Zone, located on the southern coast of Laizhou Bay, as the research subject, based on the potassium dichromate oxidation-external heating, one-way ANOVA, and Bonferroni methods, analyzing the spatial distribution of the SOC content inland of coastal Tamarix forests. The research yielded the following conclusions: (1) The surface layer (0–10 cm) contributes significantly to the total SOC content within a 0–60 cm depth, accounting for at least 31% and shows notable surface accumulation. (2) The combined SOC content in the surface and subsurface layers (10–20 cm) accounts for at least 50% of the total SOC content within a 0–60 cm depth, indicating the dominance of these two soil layers in carbon storage. (3) The SOC content decreases with the soil depth at all six sampling points within the 0–60 cm range, with a marked drop from 0–10 cm to 10–20 cm. (4) One-way ANOVA and multiple comparisons reveal that the soil depth significantly affects the SOC distribution, particularly between the surface and 20–30 cm layers (p < 0.001), indicating high robustness and statistical significance. (5) Horizontally, the total SOC at 0 m is 45% lower than at 2 m in the 0–60 cm layer. The SOC in the 0–20 cm layer fluctuates significantly with distance from the shrub trunk, while the SOC in the 30–60 cm layers is low and stable, with minimal variations with depth. In addition, this study found that the SOC content in the core area of the protected area is lower than that in the common forest ecosystem. In the future, scientific ecological restoration projects and management protection methods should be used to improve soil’s carbon storage and carbon sink capacity. These findings not only validate the patte |
---|---|
ISSN: | 1999-4907 1999-4907 |
DOI: | 10.3390/f16010169 |