Timing of Drought Affected the Growth, Physiology, and Mortality of Mongolian Pine Saplings

Background and Objectives: More frequent and severe droughts are occurring due to climate change in northern China. In addition to intensity and duration, the timing of droughts may be decisive for its impacts on tree growth, mortality, and the whole forest ecosystem. The aim of this study was to co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forests 2021-11, Vol.12 (11), p.1491
Hauptverfasser: Qian, Hui, Dong, Ai-Mei, Roitto, Marja, Xiang, Di-Ying, Zhang, Gang, Repo, Tapani, Wang, Ai-Fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background and Objectives: More frequent and severe droughts are occurring due to climate change in northern China. In addition to intensity and duration, the timing of droughts may be decisive for its impacts on tree growth, mortality, and the whole forest ecosystem. The aim of this study was to compare the effect of drought occurring in the early- and mid-growing season on the growth and physiology of Mongolian pine (Pinus sylvestris var. mongolica Litv.) saplings. Materials and Methods: Four-year-old container saplings that were about to sprout were exposed to three treatments: (i) regular irrigation throughout the growing season (CTRL), (ii) no irrigation in the early growing season (weeks 1–5) followed by regular irrigation (EGD), (iii) no irrigation in the mid growing season (weeks 5–10), and regular irrigation in the early and late growing season (MGD). We measured the root and shoot growth, sapling mortality, and the physiological changes in the roots and needles periodically. Results: Drought in the mid growing season was more harmful than in the early growing season in terms of chlorophyll fluorescence, electrolyte leakage of needles, needle length, stem diameter increment, and sapling mortality. The high mortality in the mid growing season might be attributed to the joint effect of drought and high temperature. Drought in the early growing season decreased root growth, and the starch and soluble sugars in roots as much as the drought in the mid growing season. Abscisic acid concentration increased in fine roots, but decreased in old needles after drought. Conclusions: Special attention should be paid on forest sites susceptible to drought during afforestation in the face of ongoing climate change.
ISSN:1999-4907
1999-4907
DOI:10.3390/f12111491