Mathematical Modeling of the Coaxial Quadrotor Dynamics for Its Attitude and Altitude Control

In this paper, an easily implementable coaxial quadrotor model and its validation on data from a real unmanned aerial vehicle (UAV), are presented. The proposed mathematical model consists of two parts: description of orientation and position of the UAV in the three-dimensional space. It takes into...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2021-03, Vol.14 (5), p.1232, Article 1232
Hauptverfasser: Giernacki, Wojciech, Goslinski, Jaroslaw, Goslinska, Jagoda, Espinoza-Fraire, Tadeo, Rao, Jinjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, an easily implementable coaxial quadrotor model and its validation on data from a real unmanned aerial vehicle (UAV), are presented. The proposed mathematical model consists of two parts: description of orientation and position of the UAV in the three-dimensional space. It takes into consideration the gyroscopic effect, influence of the Coriolis force, viscous friction and a several drag-like effects (blade flapping, rotor drag, translational drag and profile drag). In contrast to multirotor models available in the literature, this one is characterized by complementarity in relation to the available control techniques. Depending on selection of these techniques, the model can be narrowed (simplified) to meet the needs without the loss of behaviour adequacy to a real UAV.
ISSN:1996-1073
1996-1073
DOI:10.3390/en14051232