Novel Design and Adaptive Fuzzy Control of a Lower-Limb Elderly Rehabilitation

Design and control of a lower-limb exoskeleton rehabilitation of the elderly are the main challenge for health care in the past decades. In order to satisfy the requirements of the elderly or disabled users, this paper presents a novel design and adaptive fuzzy control of lower-limb empowered rehabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2020-02, Vol.9 (2), p.343
Hauptverfasser: Zhang, Xin, Li, Jiehao, Ovur, Salih Ertug, Chen, Ziyang, Li, Xiangnan, Hu, Zhenhuan, Hu, Yingbai
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Design and control of a lower-limb exoskeleton rehabilitation of the elderly are the main challenge for health care in the past decades. In order to satisfy the requirements of the elderly or disabled users, this paper presents a novel design and adaptive fuzzy control of lower-limb empowered rehabilitation, namely MOVING UP. Different from other rehabilitation devices, this article considers active rehabilitation training devices. Firstly, a novel product design method based on user experience is proposed for the lower-limb elderly exoskeleton rehabilitation. At the same time, in order to achieve a stable operation control for the assistant rehabilitation system, an adaptive fuzzy control scheme is discussed. Finally, the feasibility of the design and control method is validated with a detailed simulation study and the human-interaction test. With the booming demand in the global market for the assistive lower-limb exoskeleton, the methodology developed in this paper will bring more research and manufacturing interests.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics9020343