Dual Threshold Adaptive Dynamic Migration Strategy of Virtual Resources Based on BBU Pool
The rapid development of mobile communications and the continuous growth of service needs lead to an increase in the number of base stations (BSs). Through virtualization and cloud technology, virtual Baseband Units (BBUs) are deployed on a virtual machine (VM) to build a BBU pool to achieve hardwar...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2020-02, Vol.9 (2), p.314 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The rapid development of mobile communications and the continuous growth of service needs lead to an increase in the number of base stations (BSs). Through virtualization and cloud technology, virtual Baseband Units (BBUs) are deployed on a virtual machine (VM) to build a BBU pool to achieve hardware resource sharing, which not only saves BS construction costs but also facilitates management and control. However, too high or too low server resource utilization in the pool not only affects the performance of the virtual BBU but also increases the maintenance cost of the physical equipment. In this paper, BBUs are virtualized to construct a virtual BBU pool based on the OpenStack cloud architecture and a dual threshold adaptive dynamic migration strategy is proposed in this scenario. Establish upper and lower threshold of resource utilization of the servers in the pool and the strategy determines whether the dynamic migration is triggered according to the resource utilization of each compute node. If the migration is triggered, the strategy selects the virtual resource to be moved out and the target node to realize the dynamic migration to achieve the purpose of balancing the server load and saving energy consumption. The migration strategy proposed in this paper is simulated on Cloudsim and the experimental results show that the strategy can effectively reduce the number of migrations and migration time on the basis of reducing energy consumption and SLA violations. This paper successfully deployed the strategy on the OpenStack platform, which implements dynamic migration autonomously to save the overall energy consumption of the BBU pool, instead of manual operations. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics9020314 |