An Automatic Design Framework for Real-Time Power System Simulators Supporting Smart Grid Applications

Smart grid technology is the next step to the evolution of classical power grids, providing robustness, reliability, and security throughout the network, enabling real-time management and control. To achieve these goals, distributed computing (microgrid concept) and intelligent control algorithms, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2020-02, Vol.9 (2), p.299
Hauptverfasser: Mylonas, Eleftherios, Tzanis, Nikolaos, Birbas, Michael, Birbas, Alexios
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Smart grid technology is the next step to the evolution of classical power grids, providing robustness, reliability, and security throughout the network, enabling real-time management and control. To achieve these goals, distributed computing (microgrid concept) and intelligent control algorithms, tailored to the nature and needs of the network under study, are necessary. To deal with the vast diversity of power grids, being able to capture the dynamics of any given network, and create tools for network analysis, apparatus testing, and power grid management, an automatic design framework for real-time power system simulators is needed. In this article, a prototype of this approach is presented, employing Field Programmable Gate Array (FPGA) platforms due to their reconfigurability that enables low-power, low-latency, and high-performance designs, as a first attempt towards an open source platform, compatible with the majority of hardware design suites. It comprises two major parts: (i) a user-oriented section, built in Matlab/Simulink; and (ii) a hardware-oriented section, written in Matlab and Very High Speed Integrated Circuit (VHSIC)-Hardware Description Language (VHDL) code. To verify its functionality, two test power networks were given in a schematic format, analyzed through Matlab code and turned into dedicated hardware simulators with the aid of the VHDL template. Then, simulation results from Simulink and the prototype were compared for error estimation. The results show the prototype’s successful implementation with minimal resources utilization, high performance and low latency in the order of nanoseconds in Xilinx 6- and 7-series FPGAs, therefore proving its modularity and efficient use in many different scenarios, meeting low-latency/real-time requirements while enabling further smart grid research.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics9020299