Control Strategy for DC Micro-Grids in Heat Pump Applications with Renewable Integration
DC micro-grids are emerging as a promising solution for efficiently integrating renewable energy into power systems. These systems offer increased flexibility and enhanced energy management, making them ideal for applications such as heat pump (HP) systems. However, the integration of intermittent r...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2025-01, Vol.14 (1), p.150 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | DC micro-grids are emerging as a promising solution for efficiently integrating renewable energy into power systems. These systems offer increased flexibility and enhanced energy management, making them ideal for applications such as heat pump (HP) systems. However, the integration of intermittent renewable energy sources with optimal energy management in these micro-grids poses significant challenges. This paper proposes a novel control strategy designed specifically to improve the performance of DC micro-grids. The strategy enhances energy management by leveraging an environmental mission profile that includes real-time measurements for energy generation and heat pump performance evaluation. This micro-grid application for heat pumps integrates photovoltaic (PV) systems, wind generators (WGs), DC-DC converters, and battery energy storage (BS) systems. The proposed control strategy employs an intelligent maximum power point tracking (MPPT) approach that uses optimization algorithms to finely adjust interactions among the subsystems, including renewable energy sources, storage batteries, and the load (heat pump). The main objective of this strategy is to maximize energy production, improve system stability, and reduce operating costs. To achieve this, it considers factors such as heating and cooling demand, power fluctuations from renewable sources, and the MPPT requirements of the PV system. Simulations over one year, based on real meteorological data (average irradiance of 500 W/m2, average annual wind speed of 5 m/s, temperatures between 2 and 27 °C), and carried out with Matlab/Simulink R2022a, have shown that the proposed model predictive control (MPC) strategy significantly improves the performance of DC micro-grids, particularly for heat pump applications. This strategy ensures a stable DC bus voltage (±1% around 500 V) and maintains the state of charge (SoC) of batteries between 40% and 78%, extending their service life by 20%. Compared with conventional methods, it improves energy efficiency by 15%, reduces operating costs by 30%, and cuts CO2; emissions by 25%. By incorporating this control strategy, DC micro-grids offer a sustainable and reliable solution for heat pump applications, contributing to the transition towards a cleaner and more resilient energy system. This approach also opens new possibilities for renewable energy integration into power grids, providing intelligent and efficient energy management at the local level. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics14010150 |