A Cooperative Decision-Making and Control Algorithm for UAV Formation Based on Non-Cooperative Game Theory

The formation control problem of distributed fixed-wing Unmanned Aerial Vehicles (UAVs) is investigated in this paper. By utilizing the theoretical foundations of non-cooperative game theory, a novel control strategy is introduced, which allows UAVs to autonomously determine the optimal flight traje...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drones (Basel) 2024-11, Vol.8 (12), p.698
Hauptverfasser: Jiao, Yongkang, Fu, Wenxing, Cao, Xinying, Kou, Kunhu, Tang, Ji, Shen, Rusong, Zhang, Yiyang, Du, Haibo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The formation control problem of distributed fixed-wing Unmanned Aerial Vehicles (UAVs) is investigated in this paper. By utilizing the theoretical foundations of non-cooperative game theory, a novel control strategy is introduced, which allows UAVs to autonomously determine the optimal flight trajectory without relying on centralized coordination while concurrently mitigating conflicts with other UAVs. By transforming the UAV model into a double integrator form, the control complexity is reduced. Additionally, the incorporation of a homogeneous differential disturbance observer enhances the UAV’s resilience against disturbances during the control process. Through the development and validation of a Nash equilibrium-based algorithm, it is demonstrated that UAVs can sustain a predefined formation flight and autonomously adapt their trajectories in complex environments. Simulations are presented to confirm the efficiency of the proposed method.
ISSN:2504-446X
2504-446X
DOI:10.3390/drones8120698