A Data Driven Analysis and Forecast of COVID-19 Dynamics during the Third Wave Using SIRD Model in Bangladesh
In this study, we developed a compartmental SIRD model to analyze and forecast the transmission dynamics of the COVID-19 pandemic in Bangladesh during the third wave caused by the Indian delta variant. With the help of the nonlinear system of differential equations, this model can analyze the trends...
Gespeichert in:
Veröffentlicht in: | COVID 2021-10, Vol.1 (2), p.503-517 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we developed a compartmental SIRD model to analyze and forecast the transmission dynamics of the COVID-19 pandemic in Bangladesh during the third wave caused by the Indian delta variant. With the help of the nonlinear system of differential equations, this model can analyze the trends and provide reliable predictions regarding how the epidemic would evolve. The basic reproduction number regarding the pandemic has been determined analytically. The parameters used in this model have been estimated by fitting our model to the reported data for the months of May, June, and July 2021 and the goodness of fit of the parameter’s value has been found by the respective regression coefficients. Further, we conducted a sensitivity analysis of the basic reproduction number and observed that decreasing the transmission rate is the most significant factor in disease prevention. Our proposed model’s appropriateness for the available COVID-19 data in Bangladesh has been demonstrated through numerical simulations. According to the numerical simulation, it is evident that a rise in the transmission rate leads to a significant increase in the infected number of the population. Numerical simulations have also been performed by using our proposed model to forecast the future transmission dynamics for COVID-19 over a longer period of time. Knowledge of these forecasts may help the government in adopting appropriate measures to prepare for unforeseen situations that may arise in Bangladesh as well as to minimize detrimental impacts during the outbreak. |
---|---|
ISSN: | 2673-8112 2673-8112 |
DOI: | 10.3390/covid1020043 |