Copper Oxide Decorated Zinc Oxide Nanostructures for the Production of a Non-Enzymatic Glucose Sensor

The glucose concentration in human blood can have a worrisome impact on human health, so the distribution of blood glucose contaminants in the human body is an important indicator that can be used to monitor diabetes. Diabetes affects many parts of the human body, such as neurological impairment, er...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2021-08, Vol.11 (8), p.936, Article 936
Hauptverfasser: Cheng, Chung-En, Tangsuwanjinda, Sripansuang, Cheng, Hsin-Ming, Lee, Po-Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The glucose concentration in human blood can have a worrisome impact on human health, so the distribution of blood glucose contaminants in the human body is an important indicator that can be used to monitor diabetes. Diabetes affects many parts of the human body, such as neurological impairment, erectile dysfunction, and hardening of the arteries resulting in organ loss. In this study, cyclic voltammetry (CV) was used to process the electrical properties of a solution by preparing electrodes with CuO nanoparticles modified ZnO tetrapod nanostructures deposited on fluorine-doped tin oxide glass (CuO/ZnO/FTO). The measurements were processed in glucose solutions of different concentrations purposing for developing the sensitivity of the sensor. Different immersion times in the precursor copper sulfate solution were also used for preparing the electrode and carried out for electrochemical studies to adjust the electrode capability. The modified electrode, which was immersed in copper sulfate for 30 s, was efficient in detecting glucose molecules in different concentrations at the potential of +0.6 V. The rising slope is strongly and positively correlated with the concentration of glucose. One of the significant results is the indication that glucose concentration is linearly proportional to the current value of CV. After the measurement test with the addition of interference, the sensor can still identify the glucose concentration in the solution without being affected. This result proves that the sensor has considerable potential for developing into a high-performance non-enzymatic glucose sensor.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings11080936