Comparison of the Technical Performance of Leather, Artificial Leather, and Trendy Alternatives
The market for biogenic and synthetic alternatives to leather is increasing aiming to replace animal-based materials with vegan alternatives. In parallel, bio-based raw materials should be used instead of fossil-based synthetic raw materials. In this study, a shoe upper leather and an artificial lea...
Gespeichert in:
Veröffentlicht in: | Coatings (Basel) 2021-02, Vol.11 (2), p.226 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The market for biogenic and synthetic alternatives to leather is increasing aiming to replace animal-based materials with vegan alternatives. In parallel, bio-based raw materials should be used instead of fossil-based synthetic raw materials. In this study, a shoe upper leather and an artificial leather, and nine alternative materials (Desserto®, Kombucha, Pinatex®, Noani®, Appleskin®, Vegea®, SnapPap®, Teak Leaf®, and Muskin®) were investigated. We aimed to compare the structure and technical performance of the materials, which allows an estimation of possible application areas. Structure and composition were characterized by microscopy and FTIR spectroscopy, the surface properties, mechanical performance, water vapor permeability, and water absorption by standardized physical tests. None of the leather alternatives showed the universal performance of leather. Nevertheless, some materials achieved high values in selected properties. It is speculated that the grown multilayer structure of leather with a very tight surface and a gradient of the structural density over the cross-section causes this universal performance. To date, this structure could neither be achieved with synthetic nor with bio-based materials. |
---|---|
ISSN: | 2079-6412 2079-6412 |
DOI: | 10.3390/coatings11020226 |