Green Corrosion Inhibition of Mild Steel by Hydrazone Derivatives in 1.0 M HCl

In the present study, the inhibition performance of two synthesized hydrazone derivatives (HDZs), namely, (E)-N′-(2,4-dimethoxybenzylidene)-2-(6-methoxynaphthalen-2-yl) propanehydrazide (HYD-1) and N′-cyclohexylidene-2-(6-methoxynaphthalen-2-yl) propanehydrazide (HYD-2) on mild steel (MS) in 1.0 M H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2020-07, Vol.10 (7), p.640
Hauptverfasser: Chaouiki, Abdelkarim, Chafiq, Maryam, Lgaz, Hassane, Al-Hadeethi, Mustafa R., Ali, Ismat H., Masroor, Sheerin, Chung, Ill-Min
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present study, the inhibition performance of two synthesized hydrazone derivatives (HDZs), namely, (E)-N′-(2,4-dimethoxybenzylidene)-2-(6-methoxynaphthalen-2-yl) propanehydrazide (HYD-1) and N′-cyclohexylidene-2-(6-methoxynaphthalen-2-yl) propanehydrazide (HYD-2) on mild steel (MS) in 1.0 M HCl was investigated using weight loss measurements, electrochemical techniques, and scanning electron microscope (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX). The experimental data suggested that the hydrazone derivatives exhibited a high inhibition performance, which increases with increasing their concentrations. HYD-1 and HYD-2 presented maximum inhibition efficiencies of 96% and 84%, respectively, at an optimal concentration of 5 × 10–3 M. The principal observations that resulted from electrochemical studies are that HYDs affected both anodic and cathodic reactions (mixed inhibitors). Their adsorption, which is a combination of chemisorption and physisorption, obeyed the Langmuir isotherm model. Furthermore, the temperature effect was carried out at various temperatures ranging from 303 to 333 K to verify the corrosion inhibition performance of HYD-1 at higher temperatures. Moreover, SEM-EDX analysis confirmed that HYDs can ensure remarkable prevention against corrosion through the adsorption onto the metal surface.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings10070640