The Mimic Enzyme Properties of Au@PtNRs and the Detection for Ascorbic Acid Based on Their Catalytic Properties

Being superior to natural enzymes, nanoenzymes are drawing a great deal of attention in the field of biosensing. Herein, we developed an ultrasensitive, stable and selective colorimetric assay having dual functionalities of Au-tipped Pt nanorods (NRs). The optical and catalytic properties of Au-tipp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2020-11, Vol.10 (11), p.1285
Hauptverfasser: Gan, Hao, Han, Wenzhao, Liu, Jiadi, Qi, Juntian, Li, Hui, Wang, Liping
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Being superior to natural enzymes, nanoenzymes are drawing a great deal of attention in the field of biosensing. Herein, we developed an ultrasensitive, stable and selective colorimetric assay having dual functionalities of Au-tipped Pt nanorods (NRs). The optical and catalytic properties of Au-tipped Pt NRs were monitored using a spectrophotometer and the chromogenic substrate 3, 3′, 5, 5′-tetramethylbenzidine (TMB) in the presence of H2O2, respectively. We found that Au-tipped Pt NRs exhibited excellent peroxidase-like activity, which decomposed hydrogen peroxide (H2O2) into oxygen (O2). The produced O2 oxidized the chromogenic substrate into a blue color product. The oxidation rate of the chromogenic substrate could be monitored using a spectrophotometer at 652 nm. Notably, the peroxidase-like activity of Au-tipped Pt NRs decreased in the presence of ascorbic acid (AA). The produced O2 preferentially reacted with AA, generating ascorbyl radicals (AA·) instead of oxidizing TMB, and thereby decreased the oxidation rate of TMB. Based on this inhibitory property, a selective colorimetric assay was developed using Au-tipped Pt NRs for the detection of AA. This work offers a novel detection method for AA.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal10111285