Paliperidone Inhibits Glioblastoma Growth in Mouse Brain Tumor Model and Reduces PD-L1 Expression
Simple Summary The present study showed that a prescribed psychotropic medicine paliperidone inhibits GBM growth and prolongs survival in mouse brain tumor model and decreased the programmed death ligand 1 expression. Using the 3D co-culture also found that dopamine receptor D2 regulates the interac...
Gespeichert in:
Veröffentlicht in: | Cancers 2021-08, Vol.13 (17), p.4357, Article 4357 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Simple Summary The present study showed that a prescribed psychotropic medicine paliperidone inhibits GBM growth and prolongs survival in mouse brain tumor model and decreased the programmed death ligand 1 expression. Using the 3D co-culture also found that dopamine receptor D2 regulates the interaction of GBM-macrophage-induced PD-L1 expression in GBMs. In addition, the expression of DRD2 and PD-L1 in GBM modulates tumor-associated macrophage polarization. Our results also indicated that there is a contact-independent mechanism of PD-L1 induction in GBM upon interaction between GBM and monocytes. The present study also found that the interaction of GBM-macrophage-enhanced PD-L1 expression in GBM occurred by modulating the ERK and STAT3 signaling pathways. In addition, the inhibition of DRD2 reduces the upregulation of PD-1 expression, and it is regulating signaling in GBM. A previous study from our group reported that monocyte adhesion to glioblastoma (GBM) promoted tumor growth and invasion activity and increased tumor-associated macrophages (TAMs) proliferation and inflammatory mediator secretion as well. The present study showed that prescribed psychotropic medicine paliperidone reduced GBM growth and immune checkpoint protein programmed death ligand (PD-L)1 expression and increased survival in an intracranial xenograft mouse model. An analysis of the database of patients with glioma showed that the levels of PD-L1 and dopamine receptor D (DRD)2 were higher in the GBM group than in the low grade astrocytoma and non-tumor groups. In addition, GFP expressing GBM (GBM-GFP) cells co-cultured with monocytes-differentiated macrophage enhanced PD-L1 expression in GBM cells. The enhancement of PD-L1 in GBM was antagonized by paliperidone and risperidone as well as DRD2 selective inhibitor L741426. The expression of CD206 (M2 phenotype marker) was observed to be markedly increased in bone marrow-derived macrophages (BMDMs) co-cultured with GBM. Importantly, treatment with paliperidone effectively decreased CD206 and also dramatically increased CD80 (M1 phenotype marker) in BMDMs. We have previously established a PD-L1 GBM-GFP cell line that stably expresses PD-L1. Experiments showed that the expressions of CD206 was increased and CD80 was mildly decreased in the BMDMs co-cultured with PD-L1 GBM-GFP cells. On the other hands, knockdown of DRD2 expression in GBM cells dramatically decreased the expression of CD206 but markedly increased CD80 expressions in BMDMs. |
---|---|
ISSN: | 2072-6694 2072-6694 |
DOI: | 10.3390/cancers13174357 |