Characteristics of Damage to Rural Houses in the High-Intensity Area of the Jishishan Mw 6.2 Earthquake

On 18 December 2023, a 6.2-magnitude earthquake struck Jishishan, affecting multiple counties and cities in Gansu and Qinghai Provinces. The seismic intensity of the meizoseismal area was VIII, resulting in extensive structural damage and building collapses. A damage assessment was conducted of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Buildings (Basel) 2024-11, Vol.14 (12), p.3762
Hauptverfasser: Zhong, Xiumei, Wang, Qian, Wang, Yan, Wang, Ping, Li, Chen, Hu, Xuefeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On 18 December 2023, a 6.2-magnitude earthquake struck Jishishan, affecting multiple counties and cities in Gansu and Qinghai Provinces. The seismic intensity of the meizoseismal area was VIII, resulting in extensive structural damage and building collapses. A damage assessment was conducted of the epicenter and surrounding high-intensity zones. To understand the typical structures and characteristics of the buildings that were damaged in these high-intensity zones, this study summarizes the characteristics of the damage to typical rural houses, compares the damage of the rural houses across different sites, and analyzes the causes behind these variations. The findings of the study indicate the following: (1) Timber and some brick–timber structures, due to their age, insufficient material strength, and lack of adequate connections between parts of the building, primarily experienced severe damage or total collapse, characterized by through-wall cracks, partial collapses, or complete collapses. (2) Brick–concrete structures predominantly suffered moderate to severe damage due to factors such as improper layout, uneven façades, and inadequate or incomplete seismic measures. The observed damage included significant wall cracks and extensive damage to two-story buildings. (3) Frame structures, mainly used for public facilities like schools, hospitals, and health centers, exhibited strong integrity and excellent seismic performance, resulting in minimal to no damage, with damage largely confined to non-load-bearing components. (4) The amplification effects of seismic waves in thick loess basin areas, slope sites, and the hanging wall effect of faults exacerbated structural damage to rural houses located in certain villages within the high-intensity areas. The results of this study can serve as a reference for post-disaster reconstruction and seismic retrofitting of buildings and contribute positively to enhancing the disaster resilience of rural housing.
ISSN:2075-5309
2075-5309
DOI:10.3390/buildings14123762