Seismic Behavior of Resilient Reinforced Concrete Columns with Ultra-High-Strength Rebars Under Strong Earthquake-Induced Multiple Reversed Cyclic Loading
The frequent occurrence of major earthquakes highlights the structural challenges posed by long-period ground motions (LPGMs). This study investigates the seismic performance and resilience of five reinforced concrete (RC) columns with different high-strength steel bars under LPGM-induced cyclic loa...
Gespeichert in:
Veröffentlicht in: | Buildings (Basel) 2024-11, Vol.14 (12), p.3747 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The frequent occurrence of major earthquakes highlights the structural challenges posed by long-period ground motions (LPGMs). This study investigates the seismic performance and resilience of five reinforced concrete (RC) columns with different high-strength steel bars under LPGM-induced cyclic loading, both experimentally and numerically. The results show that low-bond and debonded high-strength steel bars significantly enhance self-centering capabilities and reduce residual drift, with lateral force reductions of 7.6% for normal cyclic loading and 19.2% for multiple reversed cyclic loading. The concrete damage in the hinge zone of the columns was increased; however, the significant inside damage of the concrete near the steel bars made it easier to restore the columns for the damage accumulation caused by multiple loading. Based on the experiment, a numerical model was developed for the columns, and a simplified model was proposed to predict energy dissipation capacity, providing practical design methods for resilient RC structures that may be attacked by LPGMs. |
---|---|
ISSN: | 2075-5309 2075-5309 |
DOI: | 10.3390/buildings14123747 |