Seismic Behavior of Resilient Reinforced Concrete Columns with Ultra-High-Strength Rebars Under Strong Earthquake-Induced Multiple Reversed Cyclic Loading

The frequent occurrence of major earthquakes highlights the structural challenges posed by long-period ground motions (LPGMs). This study investigates the seismic performance and resilience of five reinforced concrete (RC) columns with different high-strength steel bars under LPGM-induced cyclic loa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Buildings (Basel) 2024-11, Vol.14 (12), p.3747
Hauptverfasser: Wen, Yue, Cai, Gaochuang, Malla, Prafulla Bahadur, Kikuchi, Hayato, Xie, Cheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The frequent occurrence of major earthquakes highlights the structural challenges posed by long-period ground motions (LPGMs). This study investigates the seismic performance and resilience of five reinforced concrete (RC) columns with different high-strength steel bars under LPGM-induced cyclic loading, both experimentally and numerically. The results show that low-bond and debonded high-strength steel bars significantly enhance self-centering capabilities and reduce residual drift, with lateral force reductions of 7.6% for normal cyclic loading and 19.2% for multiple reversed cyclic loading. The concrete damage in the hinge zone of the columns was increased; however, the significant inside damage of the concrete near the steel bars made it easier to restore the columns for the damage accumulation caused by multiple loading. Based on the experiment, a numerical model was developed for the columns, and a simplified model was proposed to predict energy dissipation capacity, providing practical design methods for resilient RC structures that may be attacked by LPGMs.
ISSN:2075-5309
2075-5309
DOI:10.3390/buildings14123747