Admissible Hybrid Z-Contractions in b-Metric Spaces

In this manuscript, we introduce a new notion, admissible hybrid Z -contraction that unifies several nonlinear and linear contractions in the set-up of a b-metric space. In our main theorem, we discuss the existence and uniqueness result of such mappings in the context of complete b-metric space. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Axioms 2020-03, Vol.9 (1), p.2
Hauptverfasser: Chifu, Ioan Cristian, Karapınar, Erdal
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this manuscript, we introduce a new notion, admissible hybrid Z -contraction that unifies several nonlinear and linear contractions in the set-up of a b-metric space. In our main theorem, we discuss the existence and uniqueness result of such mappings in the context of complete b-metric space. The given result not only unifies the several existing results in the literature, but also extends and improves them. We express some consequences of our main theorem by using variant examples of simulation functions. As applications, the well-posedness and the Ulam–Hyers stability of the fixed point problem are also studied.
ISSN:2075-1680
2075-1680
DOI:10.3390/axioms9010002