Admissible Hybrid Z-Contractions in b-Metric Spaces
In this manuscript, we introduce a new notion, admissible hybrid Z -contraction that unifies several nonlinear and linear contractions in the set-up of a b-metric space. In our main theorem, we discuss the existence and uniqueness result of such mappings in the context of complete b-metric space. Th...
Gespeichert in:
Veröffentlicht in: | Axioms 2020-03, Vol.9 (1), p.2 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this manuscript, we introduce a new notion, admissible hybrid Z -contraction that unifies several nonlinear and linear contractions in the set-up of a b-metric space. In our main theorem, we discuss the existence and uniqueness result of such mappings in the context of complete b-metric space. The given result not only unifies the several existing results in the literature, but also extends and improves them. We express some consequences of our main theorem by using variant examples of simulation functions. As applications, the well-posedness and the Ulam–Hyers stability of the fixed point problem are also studied. |
---|---|
ISSN: | 2075-1680 2075-1680 |
DOI: | 10.3390/axioms9010002 |