Synthesis and Electrochemical Characterization of Ru-Modified Iridium Oxide Catalysts for PEM Electrolysis
In the search of sustainable energy solutions, proton exchange membrane water electrolyzers (PEMWEs) have emerged as a promising alternative for sustainable clean hydrogen production. This study focuses on synthesis and characterization of Ruthenium (Ru)-modified iridium oxide (IrO2) catalysts. The...
Gespeichert in:
Veröffentlicht in: | AppliedChem 2024-10, Vol.4 (4), p.353-366 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the search of sustainable energy solutions, proton exchange membrane water electrolyzers (PEMWEs) have emerged as a promising alternative for sustainable clean hydrogen production. This study focuses on synthesis and characterization of Ruthenium (Ru)-modified iridium oxide (IrO2) catalysts. The anode is the principal reason for the high overpotential of PEMWEs and it also greatly increases the cost of the electrolyzers. IrO2 is highly stable and corrosion-resistant, particularly in acidic environments, making it a durable catalyst for the oxygen evolution reaction (OER) in PEMWEs, though it suffers from a relatively high overpotential. Ruthenium oxide (RuO2), on the other hand, is more catalytically active with a lower overpotential, but is less stable under the same conditions. In this study, the goal was to improve the catalytic activity and stability of the anode catalyst, IrO2, through the controlled incorporation of Ru and to reduce overall catalyst cost due to the reduced iridium content. This synergistic combination allows for better performance in terms of conductivity, efficiency, and durability, making Ru-modified IrO2 an ideal catalyst for OER in PEMWE applications. The Adams fusion method was adapted and used to synthesize the catalysts. The modified catalysts were characterized using analytical instruments. These analyses provided insights into the structural, morphological, and electrochemical properties of the Ru-modified IrO2 catalysts. |
---|---|
ISSN: | 2673-9623 2673-9623 |
DOI: | 10.3390/appliedchem4040022 |