Key Intelligent Pesticide Prescription Spraying Technologies for the Control of Pests, Diseases, and Weeds: A Review

In modern agriculture, plant protection is the key to ensuring crop health and improving yields. Intelligent pesticide prescription spraying (IPPS) technologies monitor, diagnose, and make scientific decisions about pests, diseases, and weeds; formulate personalized and precision control plans; and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agriculture (Basel) 2025-01, Vol.15 (1), p.81
Hauptverfasser: Ye, Kaiqiang, Hu, Gang, Tong, Zijie, Xu, Youlin, Zheng, Jiaqiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In modern agriculture, plant protection is the key to ensuring crop health and improving yields. Intelligent pesticide prescription spraying (IPPS) technologies monitor, diagnose, and make scientific decisions about pests, diseases, and weeds; formulate personalized and precision control plans; and prevent and control pests through the use of intelligent equipment. This study discusses key IPSS technologies from four perspectives: target information acquisition, information processing, pesticide prescription spraying, and implementation and control. In the target information acquisition section, target identification technologies based on images, remote sensing, acoustic waves, and electronic nose are introduced. In the information processing section, information processing methods such as information pre-processing, feature extraction, pest and disease identification, bioinformatics analysis, and time series data are addressed. In the pesticide prescription spraying section, the impact of pesticide selection, dose calculation, spraying time, and method on the resulting effect and the formulation of prescription pesticide spraying in a certain area are explored. In the implement and control section, vehicle automatic control technology, precision spraying technology, and droplet characteristic control technology and their applications are studied. In addition, this study discusses the future development prospectives of IPPS technologies, including multifunctional target information acquisition systems, decision-support systems based on generative AI, and the development of precision intelligent sprayers. The advancement of these technologies will enhance agricultural productivity in a more efficient, environmentally sustainable manner.
ISSN:2077-0472
2077-0472
DOI:10.3390/agriculture15010081