Dynamic Envelope Optimization of Articulated Vehicles Based on Multi-Axle Steering Control Strategies

Steer-by-wire technology, critical for autonomous driving, enables full-wheel steering in articulated vehicles, significantly enhancing maneuverability in complex driving environments. This study investigates dynamic envelope optimization for articulated multi-body vehicles by integrating coordinate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Actuators 2025-01, Vol.14 (2), p.45
Hauptverfasser: Sun, Zhaocong, Yang, Shizhi, Meng, Joshua H., Zhang, Chi, Cui, Zhousen, Wang, Heqian, Wang, Wenjun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Steer-by-wire technology, critical for autonomous driving, enables full-wheel steering in articulated vehicles, significantly enhancing maneuverability in complex driving environments. This study investigates dynamic envelope optimization for articulated multi-body vehicles by integrating coordinated multi-axle steering control strategies with higher-order Bezier curve designs. Unlike traditional approaches that primarily focus on single-axle steering, this research emphasizes the advantages of multi-axle steering control, which significantly reduces the dynamic envelope and enhances maneuverability. To address the challenges posed by constrained road environments, a comparative analysis of Septimic Bezier curves under various control point configurations was conducted, demonstrating their effectiveness in achieving smoother curvature transitions and steering comfort. The results highlight the pivotal role of reducing curvature peaks and increasing curvature continuity in optimizing vehicle performance. Furthermore, advanced steering control strategies, such as Articulation Angle Reference (AAR) and Dual Ackermann Steering (DAS), were shown to outperform conventional methods by ensuring precise trajectory control and improved stability. This study provides actionable insights for enhancing vehicle handling and safety in complex driving scenarios, offering a framework for future road design and multi-axle steering system development.
ISSN:2076-0825
2076-0825
DOI:10.3390/act14020045