IL-10 does not affect oxidative burst and expression of selected surface antigen on human blood phagocytes in vitro

Cytokines play a major role in the control of inflammatory responses, participate in the regulation of blood phagocyte activities and as such are used for immunomodulatory therapy. In the present study, the influence of IL-10 on human blood phagocyte activity in the presence/absence of IL-6, IL-8 an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological research 2004, Vol.53 (2), p.199-208
Hauptverfasser: Gallová, L, Kubala, L, Cíz, M, Lojek, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cytokines play a major role in the control of inflammatory responses, participate in the regulation of blood phagocyte activities and as such are used for immunomodulatory therapy. In the present study, the influence of IL-10 on human blood phagocyte activity in the presence/absence of IL-6, IL-8 and TNF-alpha was tested in vitro. Our research analyzed the effects of cytokines on the production of reactive oxygen species measured by chemiluminescence and flow cytometry, and on the expression of surface molecules (CD11b, CD15, CD62L, CD31) measured by flow cytometry. IL-10 had no inhibitory effect on reactive oxygen species production and the expression of any examined adhesion molecule by resting or stimulated blood phagocytes within 3 h of incubation. Conversely, TNF-alpha, IL-6, and IL-8 increased reactive oxygen species production and the expression of CD11b and CD15 on both neutrophils and monocytes and decreased the expression of CD62L. These priming effects of the tested pro-inflammatory cytokines were not affected by IL-10. The obtained results suggest that IL-10 does not directly control blood phagocyte activation. These results also provide better information about the contribution of IL-6, IL-8 and TNF-alpha to the regulation of blood phagocyte-mediated inflammatory processes.
ISSN:0862-8408
1802-9973
DOI:10.33549/physiolres.930440