Tauberian theorems for statistical logarithmic summability of strongly measurable fuzzy valued functions
We define statistical logarithmic summability of strongly measurable fuzzy valued functions and we give slowly decreasing type Tauberian conditions under which statistical limit at infinity and statistical logarithmic summability of strongly measurable fuzzy valued functions imply ordinary limit at...
Gespeichert in:
Veröffentlicht in: | Communications in Advanced Mathematical Sciences 2020-06, Vol.3 (2), p.91-100 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We define statistical logarithmic summability of strongly measurable fuzzy valued functions and we give slowly decreasing type Tauberian conditions under which statistical limit at infinity and statistical logarithmic summability of strongly measurable fuzzy valued functions imply ordinary limit at infinity in one dimensional fuzzy number space $E^1$. Besides, we give slowly oscillating type Tauberian conditions for statistical limit and statistical logarithmic summability of strongly measurable fuzzy valued functions in $n-$dimensional fuzzy number space $E^n$. |
---|---|
ISSN: | 2651-4001 2651-4001 |
DOI: | 10.33434/cams.727129 |