Molecular Docking and Physicochemical Analysis of the Active Compounds of Soursop (Annona muricata Linn) for an Anti-Breast Cancer Agent
Breast cancer cases continue to increase every year. One plant that potentially has the anti-breast-cancer activity is soursop. Some compounds in soursop (Annona muricata Linn) have been reported to inhibit COX-2 enzyme (PDB code: 3LN1) activity. However, each of these test compounds' inhibitio...
Gespeichert in:
Veröffentlicht in: | Biointerface Research in Applied Chemistry 2021-08, Vol.11 (4), p.11380-11389 |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Breast cancer cases continue to increase every year. One plant that potentially has the anti-breast-cancer activity is soursop. Some compounds in soursop (Annona muricata Linn) have been reported to inhibit COX-2 enzyme (PDB code: 3LN1) activity. However, each of these test compounds' inhibition potential has not been known really well and still needs to be explored. In this research, the molecular docking simulation and the physicochemical and pharmacochemical descriptor analysis (using SwissADME server) were used to explore the potential of compounds contained in soursop as a COX-2 inhibitor for an anti-breast cancer agent. The results have shown that xylopine can inhibit the COX-2 enzyme activity with a binding energy of -11.9 kcal/mol. Its physicochemical and pharmacochemical descriptors are still within the range of oral drug bioavailability. Molecular interaction analysis has also revealed Val335, Leu338, Ser339, Trp373, Phe504, Val509, Gly512, Ala513, Ser516 amino acids always appear in ligand-COX-2 interaction and predicted to play an important role in the COX-2 inhibition mechanism. |
---|---|
ISSN: | 2069-5837 2069-5837 |
DOI: | 10.33263/BRIAC114.1138011389 |