Improvement of Weathering Resistance for Developed Thermoplastic Polyester Powder Coating for Telecommunication Plant

Corrosion is one of the most important problems, particularly in relation to outdoor telecommunication equipment. Some corrosion prevention techniques such as crevice corrosion prevention for stainless steel and protective coatings on galvanized steel have been developed. As regards the latter, we h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zairyo-to-Kankyo 2010/06/15, Vol.59(6), pp.228-231
Hauptverfasser: Takeshita, Yukitoshi, Handa, Takao, Kudo, Tamotsu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Corrosion is one of the most important problems, particularly in relation to outdoor telecommunication equipment. Some corrosion prevention techniques such as crevice corrosion prevention for stainless steel and protective coatings on galvanized steel have been developed. As regards the latter, we have already developed a duplex protection system that employs resin coating and a galvanizing technique. There has been a need for weathering resistance technology that can protect telecommunications plant materials against damage during long-term use. In this work we have tried to improve the performance under various weathering conditions, in particular under ultraviolet (UV) light, which can easily damage polymer materials. Some powder paints designed to protect against UV light were prepared, and their performances were evaluated both with accelerated UV testing (e.g. with a xenon arc device) and when subjected to natural sunlight outdoor exposure in Okinawa, which has the most severe UV light conditions in Japan. We found that the UV absorber clearly improved the resistance to UV weathering. In addition, we tested for corrosion resistance under severely corrosive conditions outdoors at a coastal location on Miyakejima Island, and found that no blistering, cracking or corrosion occurred at current exposure time.
ISSN:0917-0480
1881-9664
DOI:10.3323/jcorr.59.228