Design and Implementation of a Long Range Indoor VLC System using PWM

Visible Light Communications (VLC) is currently considered one of the most promising Optical Wireless Communications (OWC) for commercial applications, due to the widespread deployment of Light Emitting Diodes (LEDs) for energy efficiency, durability and low cost. With the ability to provide several...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of emerging technologies in computing (Online) 2019-01, Vol.3 (1), p.20-27
Hauptverfasser: Basha, Majed, Sibley, Martin J., Mather, Peter J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Visible Light Communications (VLC) is currently considered one of the most promising Optical Wireless Communications (OWC) for commercial applications, due to the widespread deployment of Light Emitting Diodes (LEDs) for energy efficiency, durability and low cost. With the ability to provide several THz of bandwidth, VLC is expected to co-exist with legacy and future Radio Frequency (RF) media as a reliable solution to the rapid demand of high-speed wireless communication. VLC is challenged by two main drawbacks: ambient light interference and the transmission range. To overcome these drawbacks, we propose a tuned VLC Analog Front-End (AFE) using simple and low-cost electronic circuity. The proposed VLC receiver architecture consists of a transimpedance amplifier, a fourth order Multiple Feed Back (MFB) band pass filter and a comparator. Experimental results demonstrated that by employing the proposed front-end the VLC transmission range could be extended up to 4.7 m by using Pulse Width Modulation (PWM). Moreover, the proposed system showed robustness against ambient light interference under the indoor scenario.
ISSN:2516-0281
2516-029X
DOI:10.33166/AETiC.2019.01.003