Improving recovery boiler availability through understanding fume behavior
Unexpected recovery boiler shutdowns are rare, but they can cost millions of dollars in lost income. Sometimes the inorganic compounds in black liquor can cause sudden fouling or plugging problems that could not be predicted beforehand. The ash particles can be divided into two main types and size c...
Gespeichert in:
Veröffentlicht in: | Tappi journal 2016-03, Vol.15 (3), p.187-193 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Unexpected recovery boiler shutdowns are rare, but they can cost millions of dollars in lost income. Sometimes the inorganic compounds in black liquor can cause sudden fouling or plugging problems that could not be predicted beforehand. The ash particles can be divided into two main types and size classes: carryover and fume. This paper focuses on the smaller fume particles that form through the condensation of alkali metal vapors and that deposit via different mechanisms than carryover. The location of fume deposition depends on several factors, such as flue gas and superheater temperatures, black liquor composition, and the flow field in the boiler. This paper presents results obtained with a computational method that simulates fume formation in recovery boilers. The paper focuses on the effect of black liquor composition and elemental release on fume behavior and suggests how these observations should be taken into account when designing new boilers or retrofits. Moreover, the paper introduces the possible applications of the modeling method. These include, for example, troubleshooting of fouling problems in existing boilers, designing superheater configurations for new boilers, and positioning soot blowers. |
---|---|
ISSN: | 0734-1415 0734-1415 |
DOI: | 10.32964/TJ15.3.187 |