Categorical Stochastic Processes and Likelihood

We take a category-theoretic perspective on the relationship between probabilistic modeling and gradient based optimization. We define two extensions of function composition to stochastic process subordination: one based on a co-Kleisli category and one based on the parameterization of a category wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositionality 2021-04, Vol.3, p.1, Article 1
1. Verfasser: Shiebler, Dan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We take a category-theoretic perspective on the relationship between probabilistic modeling and gradient based optimization. We define two extensions of function composition to stochastic process subordination: one based on a co-Kleisli category and one based on the parameterization of a category with a Lawvere theory. We show how these extensions relate to the category of Markov kernels S t o c h through a pushforward procedure.We extend stochastic processes to parametric statistical models and define a way to compose the likelihood functions of these models. We demonstrate how the maximum likelihood estimation procedure defines a family of identity-on-objects functors from categories of statistical models to the category of supervised learning algorithms L e a r n .Code to accompany this paper can be found on GitHub (https://github.com/dshieble/Categorical_Stochastic_Processes_and_Likelihood).
ISSN:2631-4444
2631-4444
DOI:10.32408/compositionality-3-1