Dynamic load balancing in IoT environments using type-2 fuzzy logic systems

In recent years, the Internet of Things (IoT) has rapidly emerged as an essential technology, enabling seamless communication between billions of interconnected devices. These devices generate a massive amount of data that requires efficient management to ensure optimum performance in IoT environmen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2024-02, p.1-9
Hauptverfasser: Rao, Bommaraju Srinivasa, Banerjee, Kakoli, Anand Deva Durai, C., Balu, S., Sahoo, Ashok Kumar, Priyadharshini, A., Rama Krishna, Paladugu, Kakade, Revannath Babanrao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, the Internet of Things (IoT) has rapidly emerged as an essential technology, enabling seamless communication between billions of interconnected devices. These devices generate a massive amount of data that requires efficient management to ensure optimum performance in IoT environments. Dynamic load balancing (DLB) is a crucial technique employed to distribute workloads evenly across multiple computing resources, thereby reducing latency and increasing the overall efficiency of IoT networks. This paper presents a novel DLB approach based on type-2 fuzzy logic systems (T2FLS) to enhance the performance and reliability of IoT environments. The proposed T2FLS-based DLB technique addresses the inherent uncertainties and imprecisions in IoT networks by considering various parameters, such as workload, processing capability, and communication latency. A comprehensive performance evaluation is carried out to compare the proposed method with traditional DLB approaches. Simulation results demonstrate that the T2FLS-based DLB technique significantly improves the network’s response time, throughput, and energy efficiency, while also providing better adaptability and robustness to dynamic changes in IoT environments. This study contributes to the advancement of DLB techniques in IoT networks and lays the groundwork for further research in this field.
ISSN:1064-1246
1875-8967
DOI:10.3233/JIFS-234105