Development and application of a time-lapse photograph analysis method to investigate the link between tidewater glacier flow variations and supraglacial lake drainage events

Marine-terminating glaciers may experience seasonal and short-term flow variations, which can impact rates of ice flux through the glacier terminus. We explore the relationship between variability in the flow of a large tidewater glacier (Belcher Glacier, Nunavut, Canada), the seasonal cycle of surf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of glaciology 2013-01, Vol.59 (214), p.287-302
Hauptverfasser: Danielson, Brad, Sharp, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Marine-terminating glaciers may experience seasonal and short-term flow variations, which can impact rates of ice flux through the glacier terminus. We explore the relationship between variability in the flow of a large tidewater glacier (Belcher Glacier, Nunavut, Canada), the seasonal cycle of surface meltwater production and the rapid drainage of supraglacial lakes. We demonstrate a novel method for analyzing time-lapse photography to quantify lake area change rates (a proxy for net filling and drainage rates) and develop a typology of lake drainage styles. GPS records of ice motion reveal four flow acceleration events which can be linked to lake drainage events discovered in the time-lapse photography. These events are superimposed on a longer pattern of velocity variation that is linked to seasonal variation in surface melting. At the terminus of the glacier, the ice displacement associated with the lake drainage events constitutes ∼10% of the seasonally accelerated displacement or 0.4% of the total annual ice displacement (336 m a−1). While the immediate ice response to these individual perturbations may be small, these drainage events may enhance overall seasonal acceleration by opening and/or sustaining meltwater conduits to the glacier bed.
ISSN:0022-1430
1727-5652
DOI:10.3189/2013JoG12J108