Fast computation of a viscoelastic deformable Earth model for ice-sheet simulations

The model used by Lingle and Clark (1985) to approximate the deformation of the Earth under a single ice stream is adapted to the purposes of continent-scale ice-sheet simulation. The model combines a layered elastic spherical Earth (Farrell, 1972) with a viscous half-space overlain by an elastic pl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of glaciology 2007, Vol.46, p.97-105
Hauptverfasser: Bueler, Ed, Lingle, Craig S., Brown, Jed
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The model used by Lingle and Clark (1985) to approximate the deformation of the Earth under a single ice stream is adapted to the purposes of continent-scale ice-sheet simulation. The model combines a layered elastic spherical Earth (Farrell, 1972) with a viscous half-space overlain by an elastic plate lithosphere (Cathles, 1975). For the half-space model we identify a new mathematical formulation, essentially a time-dependent partial differential equation, which generalizes and improves upon the standard elastic plate lithosphere with relaxing asthenosphere model widely used in ice-sheet simulation. The new formulation allows a significantly faster numerical strategy, a spectral collocation method based directly on the fast Fourier transform. We verify this method by comparing to an integral formula for a disk load. We also demonstrate that the magnitudes of numerical errors made in approximating coupled ice-flow/Earth-deformation systems are significantly smaller than pairwise differences between several Earth models. Our implementation of the Lingle and Clark (1985) model offers important features of spherical, layered, self-gravitating, viscoelastic Earth models without the computational expense.
ISSN:0260-3055
1727-5644
DOI:10.3189/172756407782871567