Generalization of the Fast Fourier Transform with a Constant Structure
The widely popular famous fast Cooley–Tukey algorithms for the discrete Fourier transform of mixed radix are presented in two forms: classical and with a constant structure. A matrix representation of these algorithms is proposed in terms of two types of tensor product of matrices: the Kronecker pro...
Gespeichert in:
Veröffentlicht in: | Z̆urnal vyc̆islitelʹnoj matematiki i matematic̆eskoj fiziki 2023-08, Vol.63 (8), p.1241-1250 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The widely popular famous fast Cooley–Tukey algorithms for the discrete Fourier transform of mixed radix are presented in two forms: classical and with a constant structure. A matrix representation of these algorithms is proposed in terms of two types of tensor product of matrices: the Kronecker product and the b-product. This matrix representation shows that the structure of these algorithms is identical to two fast Good algorithms for a Kronecker power of a matrix. A technique for constructing matrix-form fast algorithms for the discrete Fourier and Chrestenson transforms with mixed radix and for the discrete Vilenkin transform is demonstrated. It is shown that the constant-structured algorithm is preferable in the case of more sophisticated constructions |
---|---|
ISSN: | 0044-4669 |
DOI: | 10.31857/S0044466923080033 |