Farey graph and rational fixed points of the extended modular group
Fixed points of matrices have many applications in various areas of science and mathematics. Extended modular group ¯¯¯¯ΓΓ¯ is the group of 2×22×2 matrices with integer entries and determinant ±1±1. There are strong connections between extended modular group, continued fractions and Farey graph. Far...
Gespeichert in:
Veröffentlicht in: | Communications Series A1 Mathematics & Statistics 2022-12, Vol.71 (4), p.1029-1043 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fixed points of matrices have many applications in various areas of science and mathematics. Extended modular group ¯¯¯¯ΓΓ¯ is the group of 2×22×2 matrices with integer entries and determinant ±1±1. There are strong connections between extended modular group, continued fractions and Farey graph. Farey graph is a graph with vertex set ^Q=Q∪{∞}Q^=Q∪{∞}. In this study, we consider the elements in ¯¯¯¯ΓΓ¯ that fix rationals. For a given rational number, we use its Farey neighbours to obtain the matrix representation of the element in $\overline{\Gamma}$ that fixes the given rational. Then we express such elements as words in terms of generators using the relations between the Farey graph and continued fractions. Finally we give the new block reduced form of these words which all blocks have Fibonacci numbers entries. |
---|---|
ISSN: | 1303-5991 |
DOI: | 10.31801/cfsuasmas.1089480 |