Approximation properties of Bernstein singular integrals in variable exponent Lebesgue spaces on the real axis
In generalized Lebesgue spaces $L^{p(.)}$ with variable exponent $p(.)$ defined on the real axis, we obtain several inequalities of approximation by integral functions of finite degree. Approximation properties of Bernstein singular integrals in these spaces are obtained. Estimates of simultaneous a...
Gespeichert in:
Veröffentlicht in: | Communications Series A1 Mathematics & Statistics 2022-12, Vol.71 (4), p.1058-1078 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In generalized Lebesgue spaces $L^{p(.)}$ with variable exponent $p(.)$ defined on the real axis, we obtain several inequalities of approximation by integral functions of finite degree. Approximation properties of Bernstein singular integrals in these spaces are obtained. Estimates of simultaneous approximation by integral functions of finite degree in $L^{p(.)}$ are proved. |
---|---|
ISSN: | 1303-5991 |
DOI: | 10.31801/cfsuasmas.1056890 |