Approximation properties of Bernstein singular integrals in variable exponent Lebesgue spaces on the real axis

In generalized Lebesgue spaces $L^{p(.)}$ with variable exponent $p(.)$ defined on the real axis, we obtain several inequalities of approximation by integral functions of finite degree. Approximation properties of Bernstein singular integrals in these spaces are obtained. Estimates of simultaneous a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications Series A1 Mathematics & Statistics 2022-12, Vol.71 (4), p.1058-1078
1. Verfasser: AKGÜN, Ramazan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In generalized Lebesgue spaces $L^{p(.)}$ with variable exponent $p(.)$ defined on the real axis, we obtain several inequalities of approximation by integral functions of finite degree. Approximation properties of Bernstein singular integrals in these spaces are obtained. Estimates of simultaneous approximation by integral functions of finite degree in $L^{p(.)}$ are proved.
ISSN:1303-5991
DOI:10.31801/cfsuasmas.1056890