OPTIMIZATION SYNTHESIS OF ZINC OXIDE NANOPARTICLES USING FACTORIAL DESIGN AND ITS ANTIBACTERIAL ACTIVITY
Due to their chemical stability, potent antibacterial activity, and comparatively low hazardous profile, inorganic metal oxides may be used as efficient antibacterial. Zinc oxide nanoparticles (ZnO NPs) significantly slow down the growth of various bacteria. This study aimed to determine the effect...
Gespeichert in:
Veröffentlicht in: | Rasāyan journal of chemistry 2023-04, Vol.16 (2), p.773-778 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to their chemical stability, potent antibacterial activity, and comparatively low hazardous profile, inorganic metal oxides may be used as efficient antibacterial. Zinc oxide nanoparticles (ZnO NPs) significantly slow down the growth of various bacteria. This study aimed to determine the effect and interaction of pH, calcination temperature, and pectin (capping agent) on the synthesis and antibacterial activity of ZnO NPs. The synthesis was carried out by the precipitation method. Synthesis optimization using Design Expert software (factorial design) with parameters including yield, particle size, polydispersity index, zeta potential, particle shape, and inhibition zone of bacteria (P.acnes, S.aureus, and S.epidermidis). This study proves that the synthesis of ZnO NPs is influenced by pH, calcination temperature, and pectin. Various characteristics of the synthesized ZnO NPs have different antibacterial activity. The results of Design Expert analysis with 3 g of precursor obtained the optimum combination at pH 8.8, calcination temperature of 600°C, and pectin 0.76%. |
---|---|
ISSN: | 0974-1496 0974-1496 |
DOI: | 10.31788/RJC.2023.1628213 |