MULTIFUNCTIONAL CrxCa(10-x)Al30Si60 GLASSES, ELECTRICAL CONDUCTIVITY AND THERMOLUMINESCENCE
The SiO2 glasses embedded with Cr3+ ions are notable for solid state optical resource, which are useful in various opto-electronic and semiconducting applications. However, the available thermoluminescent resource, which include different electronic and semiconducting materials, need some refinement...
Gespeichert in:
Veröffentlicht in: | Rasāyan journal of chemistry 2022, Vol.15 (1), p.509-515 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The SiO2 glasses embedded with Cr3+ ions are notable for solid state optical resource, which are useful in various opto-electronic and semiconducting applications. However, the available thermoluminescent resource, which include different electronic and semiconducting materials, need some refinement in their structure, luminescence, and electronic properties towards development of advanced glass resource. In this vision, CrxCa(10-x)Al30Si60 glassy materials have planned for synthesis and testing. The GT, and GC phase transition points, and thermal stability (~1.2639) of test samples are identified. Structural vibrations are identified with the help of FT-IR spectra. The order of electrical conductivity (~1.657x10-4 ohm-1 cm-1), and A.E. (~0.3669 eV) of test samples reveal their electrical strength. The symmetry (~ 0.576%) factor, frequency (1.1172 X 1020 S -1) factor, and A.E. (0.682 eV) of the test samples are recorded under 30 kGy irradiation. Overall, the results, which include structure, electrical and luminescence of the test samples suggest the materials might be useful electrically conductive and thermal stimulated light resource. |
---|---|
ISSN: | 0974-1496 0974-1496 |
DOI: | 10.31788/RJC.2022.1516827 |