Integrated gold superparticles into lateral flow immunoassays for the rapid and sensitive detection of Escherichia coli O157:H7 in milk

Escherichia coli O157:H7 is a common harmful foodborne pathogen that can cause severe diseases at low infectious doses. Traditional lateral flow immunoassay (LFIA) for the rapid screening of E. coli O157:H7 in food suffers from low sensitivity due to its dependence on 20- to 40-nm gold nanoparticles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dairy science 2020-08, Vol.103 (8), p.6940-6949
Hauptverfasser: Li, Yu, Chen, Xirui, Yuan, Jing, Leng, Yuankui, Lai, Weihua, Huang, Xiaolin, Xiong, Yonghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Escherichia coli O157:H7 is a common harmful foodborne pathogen that can cause severe diseases at low infectious doses. Traditional lateral flow immunoassay (LFIA) for the rapid screening of E. coli O157:H7 in food suffers from low sensitivity due to its dependence on 20- to 40-nm gold nanoparticles (AuNP) with insufficient brightness as labels. To address this issue, we reported for the first time the successful synthesis of gold superparticles (GSP) by encapsulating numerous small AuNP into a polymer nanobead using an evaporation-induced self-assembly method. Results indicated that the resultant GSP exhibited remarkably enhanced absorbance compared with the most widely used 40 nm AuNP in LFIA. In addition, the absorbance of GSP could be easily tuned by varying GSP sizes. Under optimized conditions, we achieved a rapid and sensitive determination of E. coli O157:H7 in milk with a detection limit of 5.95 × 102 cfu/mL when using the GSP with a size of 342 nm as LFIA signal reporters, exhibiting improvement of approximately 32-fold relative to the conventional 40 nm AuNP-LFIA method. We further demonstrated the selectivity, accuracy, reliability, and practicality of the proposed GSP-LFIA strip. In summary, this work offers a new strategy for improving LFIA sensitivity using assembled GSP as markers and demonstrates huge potential in rapidly and sensitively detecting foodborne pathogens.
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.2019-17934