Localized Gaussian width of M-convex hulls with applications to Lasso and convex aggregation

Upper and lower bounds are derived for the Gaussian mean width of a convex hull of M points intersected with a Euclidean ball of a given radius. The upper bound holds for any collection of extreme points bounded in Euclidean norm. The upper bound and the lower bound match up to a multiplicative cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2019-11, Vol.25 (4A), p.3016-3040
1. Verfasser: BELLEC, PIERRE C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Upper and lower bounds are derived for the Gaussian mean width of a convex hull of M points intersected with a Euclidean ball of a given radius. The upper bound holds for any collection of extreme points bounded in Euclidean norm. The upper bound and the lower bound match up to a multiplicative constant whenever the extreme points satisfy a one sided Restricted Isometry Property. An appealing aspect of the upper bound is that no assumption on the covariance structure of the extreme points is needed. This aspect is especially useful to study regression problems with anisotropic design distributions. We provide applications of this bound to the Lasso estimator in fixed-design regression, the Empirical Risk Minimizer in the anisotropic persistence problem, and the convex aggregation problem in density estimation.
ISSN:1350-7265
1573-9759
DOI:10.3150/18-BEJ1078