Parametric inference for nonsynchronously observed diffusion processes in the presence of market microstructure noise

We study parametric inference for diffusion processes when observations occur nonsynchronously and are contaminated by market microstructure noise. We construct a quasi-likelihood function and study asymptotic mixed normality of maximum-likelihood- and Bayes-type estimators based on it. We also prov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2018-11, Vol.24 (4B), p.3318-3383
1. Verfasser: OGIHARA, TEPPEI
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study parametric inference for diffusion processes when observations occur nonsynchronously and are contaminated by market microstructure noise. We construct a quasi-likelihood function and study asymptotic mixed normality of maximum-likelihood- and Bayes-type estimators based on it. We also prove the local asymptotic normality of the model and asymptotic efficiency of our estimator when the diffusion coefficients are deterministic and noise follows a normal distribution. We conjecture that our estimator is asymptotically efficient even when the latent process is a general diffusion process. An estimator for the quadratic covariation of the latent process is also constructed. Some numerical examples show that this estimator performs better compared to existing estimators of the quadratic covariation.
ISSN:1350-7265
DOI:10.3150/17-bej962